

Matrices - solving two simultaneous equations

sigma-matrices8-2009-1

One of the most important applications of matrices is to the solution of linear simultaneous equations. On this leaflet we explain how this can be done.

Writing simultaneous equations in matrix form

Consider the simultaneous equations

$$\begin{array}{rcl} x+2y &=& 4\\ 3x-5y &=& 1 \end{array}$$

Provided you understand how matrices are multiplied together you will realise that these can be written in matrix form as

$$\left(\begin{array}{cc}1&2\\3&-5\end{array}\right)\left(\begin{array}{c}x\\y\end{array}\right) = \left(\begin{array}{c}4\\1\end{array}\right)$$

Writing

$$A = \begin{pmatrix} 1 & 2 \\ 3 & -5 \end{pmatrix}, \qquad X = \begin{pmatrix} x \\ y \end{pmatrix}, \qquad \text{and} \qquad B = \begin{pmatrix} 4 \\ 1 \end{pmatrix}$$

we have

AX = B

This is the **matrix form** of the simultaneous equations. Here the only unknown is the matrix X, since A and B are already known. A is called the **matrix of coefficients**.

Solving the simultaneous equations

Given

AX = B

we can multiply both sides by the inverse of A, provided this exists, to give

$$A^{-1}AX = A^{-1}B$$

But $A^{-1}A = I$, the identity matrix. Furthermore, IX = X, because multiplying any matrix by an identity matrix of the appropriate size leaves the matrix unaltered. So

$$X = A^{-1}B$$

if AX = B, then $X = A^{-1}B$

This result gives us a method for solving simultaneous equations. All we need do is write them in matrix form, calculate the inverse of the matrix of coefficients, and finally perform a matrix multiplication.

Example. Solve the simultaneous equations

$$\begin{array}{rcl} x+2y &=& 4\\ 3x-5y &=& 1 \end{array}$$

Solution. We have already seen these equations in matrix form: $\begin{pmatrix} 1 & 2 \\ 3 & -5 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 4 \\ 1 \end{pmatrix}$.

We need to calculate the inverse of $A = \begin{pmatrix} 1 & 2 \\ 3 & -5 \end{pmatrix}$.

$$A^{-1} = \frac{1}{(1)(-5) - (2)(3)} \begin{pmatrix} -5 & -2 \\ -3 & 1 \end{pmatrix} = -\frac{1}{11} \begin{pmatrix} -5 & -2 \\ -3 & 1 \end{pmatrix}$$

Then X is given by

$$X = A^{-1}B = -\frac{1}{11} \begin{pmatrix} -5 & -2 \\ -3 & 1 \end{pmatrix} \begin{pmatrix} 4 \\ 1 \end{pmatrix}$$
$$= -\frac{1}{11} \begin{pmatrix} -22 \\ -11 \end{pmatrix}$$
$$= \begin{pmatrix} 2 \\ 1 \end{pmatrix}$$

Hence x = 2, y = 1 is the solution of the simultaneous equations. **Example.** Solve the simultaneous equations

$$2x + 4y = 2$$
$$-3x + y = 11$$
Solution. In matrix form: $\begin{pmatrix} 2 & 4 \\ -3 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 2 \\ 11 \end{pmatrix}$.
We need to calculate the inverse of $A = \begin{pmatrix} 2 & 4 \\ -3 & 1 \end{pmatrix}$.
$$A^{-1} = \frac{1}{(2)(1) - (4)(-3)} \begin{pmatrix} 1 & -4 \\ 3 & 2 \end{pmatrix} = \frac{1}{14} \begin{pmatrix} 1 & -4 \\ 3 & 2 \end{pmatrix}$$

Then X is given by

$$X = A^{-1}B = \frac{1}{14} \begin{pmatrix} 1 & -4 \\ 3 & 2 \end{pmatrix} \begin{pmatrix} 2 \\ 11 \end{pmatrix}$$
$$= \frac{1}{14} \begin{pmatrix} -42 \\ 28 \end{pmatrix}$$
$$= \begin{pmatrix} -3 \\ 2 \end{pmatrix}$$

Hence x = -3, y = 2 is the solution of the simultaneous equations. You should check the solution by substituting x = -3 and y = 2 into both given equations, and verifying in each case that the left-hand side is equal to the right-hand side.

Note that a video tutorial covering the content of this leaflet is available from sigma.

