

(h centre 2003	ltem 🔘
К	ท.วธ.อาร์ทอว ท	16m.www

	.			J/J		
sətoN	յճա	Variance	Mean	իրը ք	Conditions/application	Name/parameters
(q,n) ni $\mathrm{B} \sim X$				$a_{x-u}(d-1)_x d\binom{x}{u} = (x=X)d$	independent success/fail tri- for n independent for n of n	lsimonia (a. a)nia
$(d-1,n)$ $\operatorname{Bin}(n,1-n) = (d,n)$	$u^{i}(d + d - 1)$	(d-1)du	du	$(d-1) d \begin{pmatrix} x \\ x \end{pmatrix} = (x-y) I$	als each with probability p of success. $X =$ number of suc-	$\operatorname{Bin}(n,p)$ Binteger n
				$u ,\ldots , {rak l} , 0=x$	Cesses.	Probability $p, 0 \leq p \leq 1$
				-	Repeated independent suc-	
P(X > a + b X > b) = P(X > a) Has the "lack of memory" property	$\frac{1-1}{p^2} \qquad \frac{p^{e^i}}{1-1-1}$	$\overline{d-1}$	$\frac{d}{I}$	$q^{1-x}(q-1) = (x = X)q$ $\dots, 2, 1 = x$	cess/fail trials each with	Geometric
					probability p of success. $X = $	$Geom(p)$ $Propability n \ 0 \le n \le 1$
					bus of qu slsirt to redmun	$\Gamma \ge q \ge 0$, $q \ge 1$
					including the first success.	
· · · · · · · · · · · · · · · · · · ·				xX	Events occur randomly at a	Poisson
Useful as approximation to $Bin(n, p)$	$((1 - {}^{t}9)\chi) = 0$	Y	Y	$P(X = 0, 1, 2, \dots, X)$ $X = 0, 1, 2, \dots$	constant rate. X .91ar tratant	$P_0(\lambda)$
llams zi q bus syral zi n fi				$x = 0, 1, 2, \ldots, x$	occurrences in some interval. À	γ s positive number
					is the expected number of oc-	
					currences	
Can approximate Binomial, Poisson				$\int \frac{z}{(u-x)} \int \frac{1}{(u-x)^2}$	for hot with the set of the set o	Normal
Pascal and Gamma distributions	$\exp\left(\mu t + \frac{5}{1}\alpha_{5}t_{5}\right)$	05	п	$l(x) = \frac{\nabla \sqrt{\Sigma^{2}}}{(x)} \exp\left(-\frac{\Sigma^{2}}{(x)}\right)$	symmetrically distributed ran-	$(\sigma, \sigma^2)_N$
(meroent timit Linteorem)				$f(x) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left(-\frac{2\sigma^2}{2\sigma^2}\right)$	bns μ nean dtiw səldsirsv mob	μ , σ both real; $\sigma > 0$
					Events are occurring at rate θ	
Has the "lack of memory" property	$ heta > t \; , rac{ heta }{t - heta }$	$\frac{\theta z}{I}$	$\frac{\theta}{\tau}$	$0 < x (x\theta -) \mathrm{d} x \exists \theta = (x) f$	per unit time. $X = time$ to be	Exponential
$(p < X)_d = (q < X q + p < X)_d$	$a > a$, $t - \theta$	zθ	θ	0 < x	per date entre et - entre ec	$\operatorname{Exbou}(\theta)$
				* /	Repeated independent suc-	Negative-binomial or
$\langle \cdot \rangle = \langle \cdot \rangle = \langle \cdot \rangle$		$(q-1)\gamma$	L	$^{n-x}(q-1)^{n}d\binom{1-x}{1-r} = (x=X)^{q}d$	trials each with	Pascal
$Pasc(1, p) \equiv Geom(p)$	$\left(\frac{{}^{i} \Theta q}{{}^{i} \Theta (q-1)-1}\right)$	$\frac{(q-1)r}{2q}$	$\frac{d}{u}$		= X .esess. $X = X$	$\mathrm{Pasc}(r,p)$
				\ldots , 2 + \imath , 1 + \imath , \imath = x	bus of qu slairt to redmun	n reget integer n
					including the r -th success.	$1 \ge q \ge 0$, q yilidador q
$G_{\mathfrak{A}}(1,\lambda) \equiv \operatorname{Expon}(\lambda)$					Generalization of the exponen-	
If v is an integer, $Ga(v/2, 2)$ is χ_v^2 ,	$(\theta)_{\alpha}$	D D	$\frac{\partial}{\partial t}$	$f(x) = rac{1}{2} e^{-\lambda \omega x} \frac{1}{2} e^{-\lambda \omega x} \frac{1}{2} e^{-\lambda \omega x} e^{-\lambda \omega $	tial distribution; if a is an in-	Gamma
the Chi-squared distribution	$arepsilon > t, \ ^{\infty}\left(rac{arepsilon}{t-arepsilon} ight)$	$\frac{z\beta}{v}$	$\frac{\frac{\omega}{\beta}}{1 < \omega}$	$\mathbf{L}(\alpha)$	teger it represents the waiting	$\operatorname{Ga}(\alpha,\beta)$
.ib v diiw		,	τ <pre>r<pre>p</pre></pre>	0 < x	time to the α-th occurrence of	$0 < {\mathcal E}, {\mathcal D}$
					a random event where β is the expected number of events.	

Standard statistical distributions

confidence interval.

 $\%(\omega - 001)$ s is larvest interval in each interval is a $(100 - \alpha)\%$ infinitely repeated random samples of size n will contain the pait is deemed likely to fall. Given α , the set of intervals from noidw nintiw egner betelvia a calculated range within which probability β . The **power** of a hypothesis test is $1-\beta$. An **inter**test. Not rejecting H_0 when we should is a Type II error, with smallest α at which we can just reject H_0 is the p-value of the called the significance level α and yields the critical value. The si rorre prepared to accept) of making a Type I error is Rejecting H_0 when we should not is a **Type l error**. The probis maintained unless it is made untenable by sample evidence. late a test statistic which is judged against a critical value. H_0 to reject H_0 or not reject H_0 uses sample evidence to calcu- H_0 , about a parameter against an alternative, H_1 . A decision A hypothesis test involves testing a claim, or null hypothesis

For the help you need to support your course

Guide to Statistics: **Probability &** Statistics Facts, Formulae and Information

.ottstists In each case the p-value is the tail area outside the calculated $\chi^2_{\text{calc}} > \chi^2_{\alpha}$, the critical value of χ^2 with (n-1) df.

and *n*. Null hypothesis, $H_0: \sigma^2 = \sigma^2_0$; alternative $H_1: \sigma^2 > \sigma^2_0$. Test statistic $\chi^2_{\text{calc}} = (n-1)s^2/\sigma^2_0 \sim \chi^2_{n-1}$. Reject H_0 if **3.** For $X \sim N(\mu, \sigma^2), \sigma^2$ unknown; random sample evidence s.1b (1-n) driw t to subst

distribution, $t \sim N(0, 1)$. Reject H_0 if $|t_{calc}| \ge t_{\alpha/2}$, the critical \overline{x} , s and n. Null hypothesis, $H_0: \mu = \mu_0$, 2-sided alternative $H_1: \mu \neq \mu_0$. Test statistic $t_{\text{calc}} = \frac{\overline{x} - \mu_0}{s/\sqrt{n}} \sim t_{(n-1)}$, the t distribution with (n-1) df. For n > 30 and if X has any

n. Null hypothesis, $H_0: \mu = \mu_0$; 2-sided alternative $H_1: \mu \neq \mu_0$. *n.* Null hypothesis, $H_0: \mu = \mu_0$; 2-sided alternative $H_1: \mu \neq \mu_0$. Test statistic $z_{calc} = \frac{x - \mu_0}{\sigma/\sqrt{n}} \sim N(0, 1)$. Reject H_0 (at the α level) if $|z_{calc}| \ge z_{\alpha/2}$, the critical value of z. **2.** For $X \sim N(\mu, \sigma^2)$, σ^2 unknown; random sample evidence $\overline{\sigma}$ for $T \approx N(\mu, \eta^2)$, σ^2 unknown; random sample evidence I. For $X \sim N(\mu, \sigma^2), \sigma^2$ known; random sample evidence \bar{x} and One sample hypothesis tests

Grouped Frequency Data

If the data are given in the form of a grouped frequency distribution where we have f_i observations in an interval whose mid-point is x_i then, if $\sum f_i = n$

$$\bar{x} = \frac{\sum f_i x_i}{\sum f_i} = \frac{\sum f_i x_i}{n} \quad \text{and}$$
$$S_{xx} = \sum f_i (x_i - \bar{x})^2 = \sum f_i x_i^2 - \frac{\left(\sum f_i x_i\right)^2}{n}.$$

Events & probabilities

The *intersection* of two events A and B is $A \cap B$. The union of A and B is $A \cup B$. A and B are **mutually exclusive** if they cannot both occur, denoted $A \cap B = \emptyset$ where \emptyset is called the **null event**. For an event $A, 0 \le P(A) \le 1$. For two events A and B

$$P(A \cup B) = P(A) + P(B) - P(A \cap B).$$

If A and B are mutually exclusive then $P(A \cup B) = P(A) + P(B).$

Equally likely outcomes

If a complete set of n elementary outcomes are all equally likely to occur, then the probability of each elementary outcome is $\frac{1}{n}$. If an event A consists of m of these n elements, then $P(A) = \frac{m}{n}$.

Independent events

A, B are independent if and only if $P(A \cap B) = P(A)P(B)$.

100(1 – α)% confidence interval for μ is $\bar{x} - \frac{t_{\alpha/2}s}{\sqrt{n}}$ to $\bar{x} + \frac{t_{\alpha/2}s}{\sqrt{n}}$. If $X \sim N(\mu, \sigma^2)$ the interval is exact for all n. If X has mean μ and variance $\sigma^2,$ with n>30 an approximate Confidence interval for a population mean - σ^2 unknown For $X_1 \sim N(\mu_1, \sigma_1^2)$, $X_2 \sim N(\mu_2, \sigma_2^2)$, σ_1^r , σ_2^2 unknown; random sample evidence \overline{x}_1 , \overline{x}_2 , s_1^2 , s_2^2 , n_1 and n_2 . **1.** Null hypothesis, $H_0 = \mu_1 - \mu_2 = c$; 2-sided alternative H_1 : $\mu_1 - \mu_2 \neq c$. Test statistic $t_{calc} = \frac{(\overline{x}_1 - \overline{x}_2 - c)}{(n_1 + n_2 - 2)} \sim t_{(n_1 + n_2 - 2)}$, and $s^2 = \frac{(n_1 - 1)s_1^2 + (n_2 - 1)s_2^2}{(n_1 + n_2 - 2)}$, assuming $\sigma_1^2 = \sigma_2^2$. Reject H_0 if $|t_{calc}| \ge t_{\alpha/2}$ the critical value of t with $(n_1 + n_2 - 2)$ df. **2.** Null hypothesis H_0 : $\sigma_1^2 = \sigma_2^2$; alternative H_1 : $\sigma_1^2 > \sigma_2^2$. Reject $R_{calc} \ge F_{\alpha}$ the critical value of F with $n_1 - 1$ and $n_2 - 1$ df. Test statistic $F_{calc} = \frac{(n_1 - 1)s_2^2}{(n_2 - 1)s_2^2} \sim F_{n_1 - 1, n_2 - 1}$. Reject H_0 if $F_{calc} \ge F_{\alpha}$ the critical value of F with $n_1 - 1$ and $n_2 - 1$ df. $R_{calc} \ge F_{\alpha}$ the critical value of F with $n_1 - 1$ and $n_2 - 1$ df.

For $X_1 \sim N(\mu_1, \sigma_1^2), X_2 \sim N(\mu_2, \sigma_2^2), \sigma_1^2, \sigma_2^2$ unknown; random

Two sample hypothesis tests

The statistical problem solving cycle

Data are numbers in context and the goal of statistics is to get information from those data, usually through problem solving. A procedure or paradigm for statistical problem solving and scientific enquiry is illustrated in the diagram. The dotted line means that, following discussion, the problem may need to be re-formulated and at least one more iteration completed.

Descriptive statistics

Given a sample of n observations, x_1, x_2, \ldots, x_n , we define the sample mean to be

$$\bar{x} = \frac{x_1 + x_2 + \ldots + x_n}{n} = \frac{\sum x_i}{n}$$

and the *corrected* sum of squares by

$$S_{xx} = \sum (x_i - \bar{x})^2 \equiv \sum x_i^2 - n\bar{x}^2 \equiv \sum x_i^2 - \frac{(\sum x_i)^2}{n}$$

 $\frac{\partial xx}{\partial x}$ is sometimes called the *mean squared deviation*. An **unbiased estimator** of the population variance, σ^2 , is $s^2 = \sigma^2$

. The sample standard deviation is s. In calculat-(n-1)

ing s^2 , the divisor (n-1) is called the **degrees of freedom** (df). Note that s is also sometimes written $\hat{\sigma}$.

If the sample data are ordered from smallest to largest then the:

minimum (Min) is the smallest value; lower quartile (LQ) is the $\frac{1}{4}(n+1)$ -th value; median (Med) is the middle [or the $\frac{1}{2}(n+1)$ -th] value; upper quartile (UQ) is the $\frac{3}{4}(n+1)$ -th value; maximum (Max) is the largest value.

These five values constitute a five-number summary of the data. They can be represented diagrammatically by a box-and-whisker plot, commonly called a boxplot.

$$P(A|B) = \frac{P(A \cap B)}{P(B)} \quad \text{if} \quad P(B) \neq 0.$$

Theorem:
$$P(B|A) = \frac{P(A|B)P(B)}{P(A|B)}.$$

Bayes' Theorem:
$$P(B|A) = \frac{I(A|B)I}{P(A)}$$

Theorem of Total Probability

The k events $B_1, B_2, \ldots B_k$ form a *partition* of the sample space S if $B_1 \cup B_2 \cup B_3 \ldots \cup B_k = S$ and no two of the B_i 's can occur together. Then $P(A) = \sum P(A|B_i)P(B_i)$. In

this case Bayes' Theorem generalizes to

$$P(B_i|A) = \frac{P(A|B_i)P(B_i)}{\sum_j P(A|B_j)P(B_j)} \qquad (i = 1, 2, \dots k)$$

If B' is the complement of the event B, P(B') = 1 - P(B)and P(A) = P(A|B)P(B) + P(A|B')P(B') is a special case of the theorem of total probability. The complement of the event B is commonly denoted \overline{B} .

> www.mathcentre.ac.uk © mathcentre 2009

mathcentre is a project offering students and staff free resources to support the transition from school mathematics to university mathematics in a range of disciplines.

www.mathcentre.ac.uk

This leaflet has been produced in conjunction with and is distributed by the Higher Education Academy Maths, Stats & OR Network.

For more copies contact the Network at info@mathstore.ac.uk

43799 D&PS Jan11

A **discrete** random variable X can take one of the values

Data arise from observations on variables that are measured on different scales. A nominal scale is used for named categories (e.g. race, gender) and an ordinal scale for data that can be ranked (e.g. attitudes, position) - no arithmetic operations are valid with either. Interval scale measurements can be added and subtracted only (e.g. temperature), but with *ratio* scale measurements (e.g. age, weight) multiplication and division can be used meaningfully as well. Generally, random variables are either discrete or continuous. Note: in reality, all data are discrete because the accuracy of measuring is always limited.

 $^{n+1}C_r = ^n C_r + ^n C_{r-1}$ Random variables

$${}^{n}C_{0} + {}^{n}C_{1} + \dots {}^{n}C_{n-1} + {}^{n}C_{n} = 2^{n}$$

n, where the order of selection is important, is the number
of **permutations**:
$${}^{n}P_{r} = \frac{n!}{(n-r)!}$$
. The number of ways in
which *r* objects can be selected from *n* when the order of
selection is not important is the number of **combinations**:
 ${}^{n}C_{r} = {n \choose r} = \frac{n!}{r!(n-r)!}$. ${}^{n}C_{n}$ must equal 1, so $0! = 1$ and
 ${}^{n}C_{0} = 1$; ${}^{n}C_{r} = {}^{n}C_{n-r}$. Also

The number of ways of selecting r objects out of a total of

Time Series

arithmetic mean of blocks of k successive values recorded through time t, (e.g. days, weeks, months). The A time series Y_i $(t=1,2,\ldots,2, l=t)$ is a set of n observations

$$\frac{\psi}{\lambda^{1}+\lambda^{2}+\cdots+\lambda^{v}},\frac{\psi}{\lambda^{2}+\lambda^{3}+\cdots+\lambda^{v+1}},\cdots$$

data to estimate μ_t with t uses a discounted weighted average of current and past exponentially weighted moving average (AWWE) against the second se estimate, the underlying level, μ_t , of Y_t . If $0 < \alpha < 1$ an which is smoother than Y_t and can be used to track, or is a simple moving average of order k, itself a time series

$$\hat{\mu}_i = \alpha Y_i + \alpha (1 - \alpha) Y_{i-1} + \alpha (1 - \alpha) + \alpha Y_0 = i \hat{\eta}$$

This is equivalent to the recurrence relation

$$\partial u_i = \alpha Y_i + (1 - \alpha) \hat{\mu}_{i-1}$$

τ

Permutations and combinations

zi noitslər əənərruəər of data per unit time, and $\mu_i = \mu_{i-1} + R_{i-1}$, then the If Y_t additionally contains trend, R_t , the rate of change Moving a verages are often plotted on the same graph as $X_{t}.$

$$(\mathbf{1}_{1-\imath}\mathcal{H}+\mathbf{1}_{-\imath}\mathcal{H})(\hat{\mu}_{\imath-\imath}+\mathcal{H}_{\imath-\imath})$$

If $0 < \beta < 1$ the trend smoothing equation is

$$\hat{I}_{1-\imath}\hat{A}(\hat{U}-I)+(I_{1-\imath}\hat{u}-\imath\hat{u})\hat{U}={}_{\imath}\hat{R}$$

with multiplicative seasonality. For monthly data k = 12. , $\lambda = \gamma Y_{i}/\hat{\mu} + (1 - \gamma)\hat{S}_{i-k}$, assuming the periodicity is k. , noiteupe printo material second se contain seasonality, S_t , a smoothing constant γ , osl
s ${}^{t}\mathrm{Y}^{t}$ I inear Exponential Smoothing. If
 Y_{t} also

Level only, $\tilde{Y}_{n+h} = \hat{\mu}_n$, the latest EWMA. (...,2,1 = h) h + n smit of (now) n smit mort prites reserved.

inear regression trend line of Y_t against t. Level and constant trend, $\tilde{Y}_{n+h} = a + b(n+h),$ the simple

, $\hat{h}_{n,n}\hat{\eta}_{n+1}=\hat{h}_{n+1}\hat{X}$, the number of t ${}_{ar{}} {}_{v} {}_{u} {}_{v} {}_$

where $\hat{\mu}_n = \alpha Y_n / \ddot{S}_{n-12} + (1-\alpha)(\hat{\mu}_{n-1} + \ddot{R}_{n-1})$.

 x_p is the 100-*p*-th percentile of a random variable X if $P(X \leq x_p) = p$. For example, the 5th percentile, $x_{0.05}$, has 5% of the values smaller than or equal to it. The ${\bf median}$ is the 50-th percentile, the ${\bf lower}$ ${\bf quartile}$ is the 25th percentile, the **upper quartile** is the 75th percentile. Measures of dispersion

Measures of location
The mean or expectation of the random variable X is
$$E[X]$$
, the long-run average of realisations of X. The mode

is where the **pmf** or **pdf** achieves a maximum (if it does

so). For a random variable, X, the **median** is such that $P(X \leq \text{median}) = \frac{1}{2}$, so that 50% of values of X occur

(i) coefficient of ^ε/_{r!} in the power expansion of M_X(t).
(ii) r-th derivative of M_X(t) evaluated at t = 0.

$$E[X^k]$$
 can be evaluated as the:

$$[k]$$
 can be evaluated as the:

$$M_X(t) = \mathbb{E}[\exp(tX)]$$
 if this exists

$$M_X(t) = \mathbb{E}[\exp(tX)]$$
 if this exists.

$$M_X(t) = \mathbb{E}[\exp(tX)]$$
 if this exists.

e is defined as
$$M_{1}(t) = \mathbb{P}[t_{1}, \dots, t_{k}]$$

$$M_{X}(t) = \mathbf{E}[\exp(tX)] \qquad \text{if this exists}$$

$$Var(X) \ge 0$$
 and is equal to 0 only if X is a constant.
 $Var(aX + b) = a^2 Var(X)$, where a and b are constants
Moment generating functions

$$\operatorname{Var}(X) = \operatorname{E}[(X - \mu)^2] \equiv \operatorname{E}[X^2] - \mu^2$$
Properties:

Variance The variance of a random variable is defined as

To fit the straight line $y = \alpha + \beta x$ to data (x_i, y_i) , $i = \alpha$ Simple Linear Regression

slope, β , and intercept, α , are given by: 1, 2, by the method of least squares the estimates of

$$q = \underline{x} = \underline{x$$

əulsv bəxñ s variance σ^2 , written as $y_i \sim N(\alpha + \beta x_i, \sigma^2)$, then if x_0 is normal distributions with means $\alpha + \beta x_i$, and constant If we assume that the x_i are known and that the y_i have

$$\begin{split} \left(\left\{ \frac{xxS}{xxS} + \frac{u}{1} \right\}_{z} o^{\circ} v \mathcal{G} + v \right) N &\sim v q + v \\ \left(\left\{ \frac{xxS}{xx} + \frac{u}{1} \right\}_{z} o^{\circ} v \mathcal{G} \right) N &\sim v \\ \left(\frac{xxS}{z^{\rho}} \mathcal{G} \right) N &\sim q \end{split}$$

common alternative is to use
$$\hat{\alpha}$$
 for α and $\hat{\beta}$ for b .

lation between them is given by: variables X and Y the Pearson (product moment) corre-Given observations (x_i, y_i) , $i = 1, 2, \ldots, n$ on two random Correlation

$$=\frac{\sqrt{\sum_{xi} \sum_{j=1}^{u} (\sum_{xi} \sum_{j=1}^{u} \sum_{j=1}^$$

 \mathcal{L}

¥

(Spearman) Rank Correlation Coefficient is given by And $M_{-\frac{1}{2}}$ or large n, r is approximately $\sim N\left(\rho, \frac{1}{n-2}\right)$. The We use r to estimate the correlation, p, between X and

$$r_S = 1 - \frac{n(n^2 - 1)}{6\sum d_i^2}$$

 $i = 1, 2, \ldots, n$. If ranks are tied, see further reading. where d_i is the difference between the ranks of (x_i, y_i) ,

Wiley and Sons. clopedia of Statistical Sciences, Vols.1-9. New York: John Further reading: Kotz, S., and Johnson,L. (1988) Ency-

Dotted line - N(0,1)
distribution
Continuous line -
t distribution with
3 degrees of
freedom
$$t,z$$

om variable $X \sim N(\mu, \sigma^2), z = (X - \mu)/\sigma$

If a rand N(0,1), the standard normal distribution. The t distribution with (n-1) degrees of freedom is used in place of z for small samples size n from normal populations when σ^2 is unknown. As n increases the distribution of t converges to N(0, 1). These distributions are used, e.g., for inference about means, differences between means and in regression.

approximation.

The standard normal and Student's t distributions

If a random sample of size n is taken from *any* distribution with mean μ and variance σ^2 , the sampling distribution of the mean will be *approximately* ~ N($\mu, \sigma^2/n$), where ~ means 'is distributed as'. The larger n is, the better the

The Central Limit Theorem

Statistics & Sampling Distributions

Population and samples

that are actually collected from a population. from taking a sample - the set of measurements or values collection of units, for which inferences are to be made sible measurements or values, corresponding to the entire A (Astriction is the complete set of all pos-

other members of the population are chosen. equally likely to be in the sample, independently of which si noitsluqoq ent ni meti vreve every item in the population is

Statistic: a quantity calculated from the sample, e.g. the ulation, eg. the population mean, μ , or variance, σ^2 . Parameter: a quantity that describes an aspect of a pop-

distribution. A statistic used to estimate the value of a have its own probability distribution, called its sampling general vary from sample to sample, in which case it will ni lliw siteitets a to sulve of a statistic will in sample mean, \overline{x} , or variance, s^2 .

parameter θ in a distribution is called an **estimator** (the

 $\operatorname{Var}(\theta)$, is called the sampling variance. bution, $E[\theta]$, is called the sampling mean. The variance, -itzib guildmas ati lo mean of t
, θ lo rotamitze na si $\dot{\theta}$ ll random variable) or an **estimate** (the value).

 $(n,\ldots,2,1=i)$, σ^2 , $(i=1,2,\ldots,1)$. ased estimator for μ and has sampling variance $\frac{\sigma^2}{n}$ where -idnu në si \overline{X} .g.s θ to rotamites bessed an unbi- $\sqrt{V} {
m Var}(\hat{\theta} \,$) is called the standard error of $\hat{\theta}$. If ${\sf E}[\hat{\theta}]= heta,$

Corrected sum of squares

$$S^{xx} = \sum (x^i - \bar{x})_{\mathsf{S}} \equiv \sum x^i_{\mathsf{S}} - u\bar{x}_{\mathsf{S}} \equiv \sum x^i_{\mathsf{S}} - \frac{u}{(\sum x^i)_{\mathsf{S}}}$$

will give an unbiased estimator of σ^2 , denoted s^2 has expectation $(1-n)\sigma^2$ so that dividing S_{xx} by (n-1)

Normal and Chi-squared distributions

If
$$X_1, X_2, \dots X_n$$
 are independently and identically $\sim N(\mu, \sigma^2)$,
then $\sum \left(\frac{X_i - \mu}{\sigma}\right)^2 \sim \chi_n^2$, a Chi-squared distribution
with n degrees of freedom.
Also $\bar{X} \sim N\left(\mu, \frac{\sigma^2}{n}\right)$ independently of $\frac{S_{xx}}{\sigma^2} \sim \chi_{(n-1)}^2$.

 $x_1, x_2, \ldots,$, the probabilities $p_i = P(X = x_i)$ must satisfy $p_i \ge 0$ and $p_1 + p_2 + \ldots = 1$. The pairs (x_i, p_i) form the probability mass function (pmf) of X.

A **continuous** random variable X takes values x from a continuous set of possible values. It has a probability density function (pdf) f(x) that satisfies $f(x) \ge 0$ and $\int f(x) dx =$

1, with $P(a < x \le b) = \int_{a}^{b} f(x) dx$. Expected values

The expected value of a function H(X) of a random variable X is defined as

 $E\left[H(X)\right] = \begin{cases} \sum H(x_i)P(X = x_i), & X \text{ discrete.} \\ \int H(x)f(x)dx, & X \text{ continuous.} \end{cases}$

Expectation is linear in that the expectation of a linear combination of functions is the same linear combination of expectations. For example,

 $E[X^{2} + \log X + 1] = E[X^{2}] + E[\log X] + 1$ but

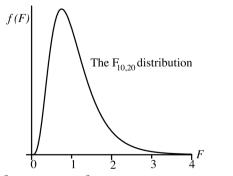
 $E[\log X] \neq \log E[X]$ and $E[1/X] \neq 1/E[X]$

The inter-quartile range is defined to be the difference between the upper and lower quartiles, UQ - LQ. The standard deviation is defined as the square root of the variance, $\sigma = \sqrt{\operatorname{Var}(X)}$, and is in the same units as the random variable X.

Cumulative Distribution Function

above and 50% below the median.

Percentiles


This is defined as a function of any real value t by

 $F(t) = P(X \le t)$

If X is a continuous random variable, F is a continuous function of t; if X is discrete, then F is a step function.

v1. Mar.07

Fisher's F distribution

If $X_1 \sim \chi^2_{\nu_1}$ and $X_2 \sim \chi^2_{\nu_2}$ are independent random variables then V /

$$\frac{X_1/\nu_1}{X_2/\nu_2} \sim F_{\nu_1,\nu_2}$$

the F distribution with (ν_1, ν_2) degrees of freedom. This distribution is used, for example, for inference about the ratio of two variances, in Analysis of Variance (ANOVA) and in simple and multiple linear regression.