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This leaflet is an overview of the rules of partial differen-
tiation and methods of optimization of functions in Eco-
nomics and Business Studies.

Partial Differentiation
First partial derivatives: given a function f(z,y):
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is obtained by differentiating f treating y as a con-
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is obtained by differentiating f treating = as a con-
stant;

There are four second partial derivatives:
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again);
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respect to y once more (treating x as a constant
again);
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respect to y (now treating x as a constant);
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respect to = (now treating y as a constant);
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In most cases, and possibly in all cases you will encounter
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Unconstrained Optimization

in your studies, we have:

First Order Conditions (FOC): if a point (zg,yo) is such
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that a%(xo,yo) = 0 AND

stationary point.
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Second Order Conditions (SOC): the stationary point
(x0,90) is:
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e a saddle point if (w)(a—yQ) - (&an) < 0.

Hessian matrix: this method is especially well-suited in the
case of functions of more than two variables. The Hessian
matrix of a function of n variables f(z1, 22, ,2,) is the
matrix with coefficients the second partial derivatives of f:
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The Hessian matrix is symmetric because we have fm]. =
fz;2,- We also define the principal minors of the Hessian
matrix as the following determinants:
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Then we have:

e A stationary point (zg,y0) is a minimum if all the
principal minors are strictly positive;

e A stationary point (zg, yo) is @ maximum if the prin-
cipal minors alternate sign, with | fz, 4, | < 0.

Constrained Optimization: Lagrange Multipliers

This method is used to find the optimum of a function
of two or more variables when the variables are under a
specific constraint:

Find the maximum (or minimum) of the function:
f(@1, 22, xn) given that: g(z1,22, - x,) < M

The constraint g(x1, 22, -x,) < M will often have the
form p1xy + pexo + -+ + ppx, < M. The Lagrangian
multipliers method does not tell you whether the optimum
is @ maximum or a minimum; however, you will always be
asked to locate either a minimum or a maximum, never to
determine the nature of the optimum.

Given the Lagrangian function
L(x7y?)\) = f(x17x27 o l’n) + )\(g(xlax27 o 'I") - M)

the optimum of the function f is such that:
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This gives a system of n 4+ 1 simultaneous equations and
n 4+ 1 unknowns; solving the system will give you the value
(210, ,Tno) Of the optimum.
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