

mathcentre community project

mcccp-richard-6

For the help you need to support your course

Differentiation for Economics and Business Studies Multi-Variable Functions

Author: Morgiane Richard, University of Aberdeen

Reviewer: Anthony Cronin, University College Dublin

This leaflet is an overview of the rules of partial differentiation and methods of optimization of functions in Economics and Business Studies.

Partial Differentiation

First partial derivatives: given a function f(x,y):

- the first derivative of f with respect to x, $\frac{\partial f}{\partial x}$ or f_x , is obtained by differentiating f treating y as a constant:
- the first derivative of f with respect to y, $\frac{\partial f}{\partial y}$ or f_y , is obtained by differentiating f treating x as a constant:

There are four second partial derivatives:

- $\frac{\partial^2 f}{\partial x^2} = f_{xx}$ is obtained by differentiating $\frac{\partial f}{\partial x}$ with respect to x once more (treating y as a constant again):
- $\frac{\partial^2 f}{\partial u^2} = f_{yy}$ is obtained by differentiating $\frac{\partial f}{\partial u}$ with respect to y once more (treating x as a constant again):
- $\frac{\partial^2 f}{\partial y \partial x} = f_{xy}$ is obtained by differentiating $\frac{\partial f}{\partial x}$ with $\begin{vmatrix} f_{x_1 x_1} & f_{x_1 x_2} & f_{x_1 x_3} \\ f_{x_2 x_1} & f_{x_2 x_2} & f_{x_2 x_3} \end{vmatrix}$, $\cdots \det H(f)$

• $\frac{\partial^2 f}{\partial x \partial u} = f_{yx}$ is obtained by differentiating $\frac{\partial f}{\partial u}$ with respect to x (now treating y as a constant);

In most cases, and possibly in all cases you will encounter in your studies, we have: $\frac{\partial^2 f}{\partial u \partial x} = \frac{\partial^2 f}{\partial x \partial u}$.

Unconstrained Optimization

First Order Conditions (FOC): if a point (x_0, y_0) is such that $\frac{\partial f}{\partial x}(x_0,y_0)=0$ **AND** $\frac{\partial f}{\partial y}(x_0,y_0)=0$, then it is a stationary point.

 (x_0, y_0) is:

- \bullet a minimum if $(\frac{\partial^2 f}{\partial x^2})(\frac{\partial^2 f}{\partial u^2}) (\frac{\partial^2 f}{\partial x \partial u})^2 > 0$ and $\left(\frac{\partial^2 f}{\partial x^2} > 0, \frac{\partial^2 f}{\partial x^2} > 0\right);$
- a maximum if $(\frac{\partial^2 f}{\partial x^2})(\frac{\partial^2 f}{\partial u^2}) (\frac{\partial^2 f}{\partial x \partial u})^2 > 0$ and $\left(\frac{\partial^2 f}{\partial x^2} < 0, \frac{\partial^2 f}{\partial u^2} < 0\right);$
- a saddle point if $(\frac{\partial^2 f}{\partial x^2})(\frac{\partial^2 f}{\partial x^2}) (\frac{\partial^2 f}{\partial x \partial y})^2 < 0$.

Hessian matrix: this method is especially well-suited in the case of functions of more than two variables. The Hessian matrix of a function of n variables $f(x_1, x_2, \dots, x_n)$ is the matrix with coefficients the second partial derivatives of f:

$$H(f) = \begin{pmatrix} f_{x_1x_1} & f_{x_1x_2} & \cdots & f_{x_1x_n} \\ f_{x_2x_1} & f_{x_2x_2} & \cdots & f_{x_2x_n} \\ \vdots & \vdots & \ddots & \vdots \\ f_{x_nx_1} & \cdots & \cdots & f_{x_nx_n} \end{pmatrix}$$

The Hessian matrix is symmetric because we have $f_{x_i x_j} =$ $f_{x_jx_i}$. We also define the principal minors of the Hessian matrix as the following determinants:

$$\begin{vmatrix} f_{x_1x_1} |, & f_{x_1x_1} & f_{x_1x_2} \\ f_{x_2x_1} & f_{x_2x_2} \end{vmatrix},$$

$$\begin{vmatrix} f_{x_1x_1} & f_{x_1x_2} & f_{x_1x_3} \\ f_{x_2x_1} & f_{x_2x_2} & f_{x_2x_3} \\ f_{x_3x_1} & f_{x_3x_2} & f_{x_3x_3} \end{vmatrix}, \cdots \det H(f)$$

Then we have:

- ullet A stationary point (x_0,y_0) is a minimum if all the principal minors are strictly positive;
- A stationary point (x_0, y_0) is a maximum if the principal minors alternate sign, with $|f_{x_1x_1}| < 0$.

Constrained Optimization: Lagrange Multipliers

This method is used to find the optimum of a function of two or more variables when the variables are under a specific constraint:

Second Order Conditions (SOC): the stationary point Find the maximum (or minimum) of the function: $f(x_1, x_2, \dots x_n)$ given that: $g(x_1, x_2, \dots x_n) < M$

> The constraint $g(x_1, x_2, \cdots x_n) \leq M$ will often have the form $p_1x_1 + p_2x_2 + \cdots + p_nx_n \leq M$. The Lagrangian multipliers method does not tell you whether the optimum is a maximum or a minimum; however, you will always be asked to locate either a minimum or a maximum, never to determine the nature of the optimum.

Given the Lagrangian function

$$L(x,y,\lambda) = f(x_1,x_2,\cdots x_n) + \lambda \Big(g(x_1,x_2,\cdots x_n) - M\Big)$$

the optimum of the function f is such that:

$$\frac{\partial L}{\partial x_1}(x_1, \cdots, x_n, \lambda) = 0$$

$$\vdots$$

$$\frac{\partial L}{\partial x_n}(x_1, \cdots, x_n, \lambda) = 0$$

$$\frac{\partial L}{\partial \lambda}(x_1, \cdots, x_n, \lambda) = 0$$

This gives a system of n+1 simultaneous equations and n+1 unknowns; solving the system will give you the value (x_{10}, \cdots, x_{n0}) of the optimum.

