Functions of a complex variable Derivative: If w = f(z) where z and w are complex

numbers, the derivative $\frac{\mathrm{d}w}{\mathrm{d}z}$ at z_0 is

$$f'(z_0) = \lim_{z \to z_0} \left[\frac{f(z) - f(z_0)}{z - z_0} \right]$$

provided that the limit exists as $z \to z_0$ along any path. If f(z) has a derivative at a point z_0 and at all points in some neighbourhood of z_0 then f(z) is said to be **analytic** at z_0 . If f(z) is analytic at all points in an (open) region R then f(z) is said to be **analytic** in R. **Cauchy-Riemann equations:** If z = x + jy and w =f(z) = u(x, y) + iv(x, y) where x, y, u and v are real variables, and f(z) is analytic in some region R of the z plane, then the **Cauchy-Riemann equations** hold throughout R:

$$\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y} \qquad \qquad \frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x}.$$

If these partial derivatives are continuous within R, the Cauchy-Riemann equations are sufficient conditions to ensure f(z) is analytic. Furthermore, $f'(z) = \frac{\partial u}{\partial z} + i \frac{\partial v}{\partial z}$. **Singularities:** If f(z) fails to be analytic at a point z_0 but is analytic at some point in every neighbourhood of z_0 then z_0 is called a singular point of f(z).

Laurent series: If f(z) is analytic on concentric circles C_1 and C_2 of radii r_1 and r_2 , centred at z_0 , and also analytic throughout the annular region between the circles, then for each point z within the annulus, f(z) may be represented by the Laurent series

$$f(z) = \sum_{n=-\infty}^{\infty} c_n (z - z_0)^n$$

in which c_n are complex constants. The series may be written -1

$$f(z) = \sum_{n=-\infty}^{-\infty} c_n (z - z_0)^n + \sum_{n=0}^{\infty} c_n (z - z_0)^n.$$

Poles: The first sum on the right is the **principal** part. If there are only a finite number of terms in the principal part e.g.

$$f(z) = \frac{c_{-m}}{(z-z_0)^m} + \ldots + \frac{c_{-1}}{(z-z_0)} + c_0 + c_1(z-z_0) + \ldots + c_m(z-z_0)^m + \ldots$$

in which $c_{-m} \neq 0$, then f(z) has a singularity called a **pole of order** m at $z = z_0$. A pole of order 1 is called a simple pole. If there are infinitely many terms in the principal part, z_0 is called an isolated essential singularity. If the principal part is zero, then f(z) has a removable singularity at $z = z_0$ and the Laurent series reduces to a Taylor series.

Residues: If f(z) has a pole at $z = z_0$ then the coefficient, c_{-1} , of $\frac{1}{z-z_0}$ in the Laurent expansion is called the residue of $\tilde{f}(z)$ at $z = z_0$. The residue at a pole of order m is given by:

$$\frac{1}{(m-1)!} \lim_{z \to z_0} \left\{ \frac{\mathrm{d}^{m-1}}{\mathrm{d} z^{m-1}} \left[(z-z_0)^m f(z) \right] \right\}.$$

When evaluating the integrals which follow, the curve Cis traversed in an anticlockwise sense.

Cauchy's theorem: If f(z) is analytic within and on a simple closed curve C then $\oint_C f(z) dz = 0$.

Cauchy's integral formula: If f(z) is analytic within and on a simple closed curve C, and if z_0 is any point within C then

$$\oint_C \frac{f(z)}{z-z_0} \mathrm{d}z = 2\pi j f(z_0).$$

Further

43799 D&PS Jan11

$$\oint_C \frac{f(z)}{(z-z_0)^{n+1}} \mathrm{d}z = \frac{2\pi j}{n!} f^{(n)}(z_0).$$

The residue theorem: If f(z) is analytic within and on a simple closed curve C apart from a finite number of poles inside C, then

$$\oint_C f(z) dz = 2\pi j \times [\text{ sum of residues}$$

of f(z) at the poles inside C].

Eigenvalues & Eigenvectors

An **eigenvector** of a square matrix A is a non-zero column vector X such that $AX = \lambda X$ where λ , (a scalar), is the corresponding **eigenvalue**. The eigenvalues are found by solving the characteristic equation

 $\det(A - \lambda I) = 0.$

An $n \times n$ symmetric matrix A with real elements has only real eigenvalues and n independent eigenvectors. The eigenvectors corresponding to distinct eigenvalues of a real symmetric matrix are orthogonal.

The **modal matrix** corresponding to the $n \times n$ square matrix A is an $n \times n$ square matrix P whose columns are the eigenvectors of A. If n independent eigenvectors are used to form P then $P^{-1}AP$ is a diagonal matrix in which the diagonal entries are the eigenvalues of Ataken in the same order that the eigenvectors were taken to form P.

> www.mathcentre.ac.uk © mathcentre 2009

For the help you need to support your course

Facts & **Formulas**

mathcentre is a project offering students and staff free resources to support the transition from school mathematics to university mathematics in a range of disciplines.

www.**math**centre.ac.uk

Stats & OR Network.

sigma Σ

For more copies contact the Network at info@mathstore.ac.uk

This leaflet has been produced in

conjunction with and is distributed by

the Higher Education Academy Maths,

Vector Calculus

$$grad \equiv \nabla \quad div \equiv \nabla \cdot \quad curl \equiv \nabla \times$$
$$\nabla \equiv \mathbf{i} \frac{\partial}{\partial x} + \mathbf{j} \frac{\partial}{\partial y} + \mathbf{k} \frac{\partial}{\partial z}$$

Laplacian $\equiv \nabla^2 \equiv \operatorname{div}(\operatorname{grad}) \equiv \nabla \cdot \nabla \equiv \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2}$

If $\Phi(x, y, z)$ is a scalar field and $\mathbf{v}(x, y, z) = v_1 \mathbf{i} + v_2 \mathbf{j} + v_3 \mathbf{k}$ is a vector field

grad
$$\Phi = \nabla \Phi = \frac{\partial \Phi}{\partial x}\mathbf{i} + \frac{\partial \Phi}{\partial y}\mathbf{j} + \frac{\partial \Phi}{\partial z}\mathbf{k}$$
 a vector.

$$\begin{aligned} \operatorname{div} \mathbf{v} &= \nabla \cdot \mathbf{v} = \frac{\partial v_1}{\partial x} + \frac{\partial v_2}{\partial y} + \frac{\partial v_3}{\partial z} & \text{a scalar.} \\ \operatorname{curl} \mathbf{v} &= \nabla \times \mathbf{v} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ v_1 & v_2 & v_3 \end{vmatrix} & \text{a vector.} \\ \nabla^2 \Phi &= \frac{\partial^2 \Phi}{\partial x^2} + \frac{\partial^2 \Phi}{\partial y^2} + \frac{\partial^2 \Phi}{\partial z^2}. \\ \nabla^2 \mathbf{v} &= \left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2} \right) (v_1 \mathbf{i} + v_2 \mathbf{j} + v_3 \mathbf{k}). \end{aligned}$$

Vector calculus identities:

 $grad(\Phi\psi) = \Phi \operatorname{grad} \psi + \psi \operatorname{grad} \Phi$ div $(\Phi \mathbf{a}) = \Phi \operatorname{div} \mathbf{a} + \mathbf{a} \cdot \operatorname{grad} \Phi$ curl $(\Phi \mathbf{a}) = \Phi \operatorname{curl} \mathbf{a} + \operatorname{grad} \Phi \times \mathbf{a}$ curl grad $\Phi = \mathbf{0}$, div curl $\mathbf{a} = 0$ curl curl $\mathbf{a} = \operatorname{grad} \operatorname{div} \mathbf{a} - \nabla^2 \mathbf{a}$ grad $(\mathbf{a} \cdot \mathbf{b}) = (\mathbf{b} \cdot \operatorname{grad})\mathbf{a} + (\mathbf{a} \cdot \operatorname{grad})\mathbf{b} + \mathbf{b} \times \operatorname{curl} \mathbf{a} + \mathbf{a} \times \operatorname{curl} \mathbf{b}$ div $(\mathbf{a} \times \mathbf{b}) = \mathbf{b} \cdot \operatorname{curl} \mathbf{a} - \mathbf{a} \cdot \operatorname{curl} \mathbf{b}$ curl $(\mathbf{a} \times \mathbf{b}) = (\mathbf{b} \cdot \operatorname{grad})\mathbf{a} - (\mathbf{a} \cdot \operatorname{grad})\mathbf{b} + \mathbf{a} \operatorname{div} \mathbf{b} - \mathbf{b} \operatorname{div} \mathbf{a}$

Green's theorem in the plane:

$$\oint_C (P dx + Q dy) = \int_R \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y}\right) dx \, dy.$$

Stokes' theorem:

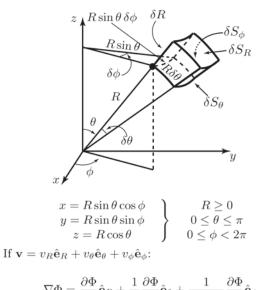
$$\oint_C \mathbf{v} \cdot \mathrm{d}\mathbf{r} = \int_S \mathrm{curl}\, \mathbf{v} \cdot \mathrm{d}\mathbf{S}$$

The divergence theorem:

$$\oint_S \mathbf{v} \cdot \mathrm{d}\mathbf{S} = \int_V \mathrm{div} \, \mathbf{v} \, \mathrm{d}V.$$

Spherical polar coordinates

The diagram shows spherical polar coordinates (R, θ, ϕ) .



$$\nabla \Psi = \frac{\partial}{\partial R} \mathbf{e}_R + \frac{\partial}{R} \frac{\partial}{\partial \theta} \mathbf{e}_{\theta} + \frac{\partial}{R} \sin \theta \frac{\partial}{\partial \phi} \mathbf{e}_{\phi}.$$

$$\nabla \cdot \mathbf{v} = \frac{1}{R^2} \frac{\partial}{\partial R} \left(R^2 v_R \right) + \frac{1}{R \sin \theta} \frac{\partial}{\partial \theta} \left(v_\theta \sin \theta \right) + \frac{1}{R \sin \theta} \frac{\partial}{\partial \phi} \left(v_\phi \right).$$

$$abla imes \mathbf{v} = rac{1}{R^2 \sin heta} \left| egin{array}{cc} \hat{\mathbf{e}}_R & R \hat{\mathbf{e}}_ heta & R \sin heta \hat{\mathbf{e}}_\phi \ rac{\partial}{\partial R} & rac{\partial}{\partial heta} & rac{\partial}{\partial \phi} \ v_R & R v_ heta & R \sin heta v_\phi \end{array}
ight|.$$

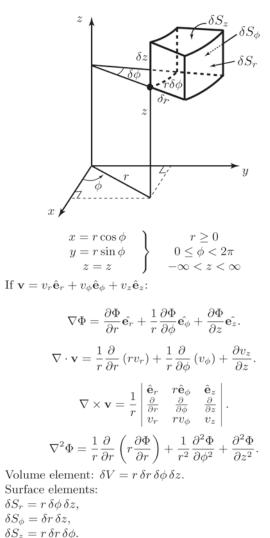
$$\begin{split} \nabla^2 \Phi &= \frac{1}{R^2} \frac{\partial}{\partial R} \left(R^2 \frac{\partial \Phi}{\partial R} \right) + \\ & \frac{1}{R^2 \sin \theta} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial \Phi}{\partial \theta} \right) + \frac{1}{R^2 \sin^2 \theta} \frac{\partial^2 \Phi}{\partial \phi^2}. \end{split}$$

Volume element: $\delta V = R^2 \sin \theta \, \delta R \, \delta \theta \, \delta \phi$. Surface elements: $\delta S_R = R^2 \sin \theta \, \delta \theta \, \delta \phi$, $\delta S_\theta = R \sin \theta \, \delta R \, \delta \phi$, $\delta S_\phi = R \, \delta R \, \delta \theta$.

Solid angles: Consider part of a sphere of radius R. If the area cut off on the surface is S, the **solid angle** at the centre is $\Omega = \frac{S}{R^2}$ steradians. The solid angle at the apex of a cone of semi-vertical angle θ is $\Omega = 2\pi(1 - \cos \theta)$.

Cylindrical polar coordinates

The diagram shows cylindrical polar coordinates (r, ϕ, z) .



Written by Tony Croft & Joe Ward for the Mathematics Learning Support Centre at Loughborough University Typesetting and artwork by the authors © 1999, © 2001

www.mathcentre.ac.uk © mathcentre 2009

Fourier Series

Fourier series:

If f(t) is periodic with period T its Fourier series is given by

$$f(t) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left(a_n \cos \frac{2n\pi t}{T} + b_n \sin \frac{2n\pi t}{T} \right)$$

or equivalently, if $\omega = 2\pi/T$,

$$f(t) = \frac{a_0}{2} + \sum_{n=1}^{\infty} (a_n \cos n\omega t + b_n \sin n\omega t).$$

 a_n and b_n are called the Fourier coefficients, given by

$$a_n = \frac{2}{T} \int_d^{d+T} f(t) \cos \frac{2n\pi t}{T} dt, \quad \text{for } n = 0, 1, 2, 3...$$

$$b_n = \frac{2}{T} \int_d^{d+T} f(t) \sin \frac{2n\pi t}{T} dt, \quad \text{for } n = 1, 2, 3...$$

where d can be chosen to have any value.

If f(t) is odd, $a_n \equiv 0$ and $f(t) = \sum_{n=1}^{\infty} b_n \sin n\omega t$. If f(t) is even, $b_n \equiv 0$ and $f(t) = \frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos n\omega t$. Parseval's theorem:

$$\frac{2}{T} \int_0^T (f(t))^2 \mathrm{d}t = \frac{1}{2}a_0^2 + \sum_{n=1}^\infty (a_n^2 + b_n^2).$$

Complex form:

$$f(t) = \sum_{n=-\infty}^{\infty} c_n e^{j2n\pi t/T}, \quad c_n = \frac{1}{T} \int_{-T/2}^{T/2} f(t) e^{-j2n\pi t/T} dt.$$

Half-range sine series: Given f(t) for $0 < t < \frac{T}{2}$, its odd periodic extension has period T and Fourier series given by

$$f(t) = \sum_{n=1}^{\infty} b_n \sin \frac{2n\pi t}{T}.$$
$$b_n = \frac{4}{T} \int_0^{T/2} f(t) \sin \frac{2n\pi t}{T} dt \quad \text{for } n = 1, 2, 3 \dots$$

Half-range cosine series: Given f(t) for $0 < t < \frac{T}{2}$, its even periodic extension has period T and Fourier series given by

$$f(t) = \frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos \frac{2n\pi t}{T}.$$
$$a_n = \frac{4}{T} \int_0^{T/2} f(t) \cos \frac{2n\pi t}{T} dt \quad \text{for } n = 0, 1, 2, 3 \dots$$

The Fourier transform

The Fourier transform of f(t) is $F(\omega)$ defined by

$$\mathcal{F}\{f(t)\} = \int_{-\infty}^{\infty} f(t)e^{-j\omega t} \mathrm{d}t = F(\omega).$$

The inverse Fourier transform is given by

$$\mathcal{F}^{-1}\{F(\omega)\} = \frac{1}{2\pi} \int_{-\infty}^{\infty} F(\omega) e^{j\omega t} \mathrm{d}\omega = f(t).$$

function $f(t)$	Fourier transform $F(\omega)$
$Au(t)e^{-\alpha t}, \ \alpha > 0$	$\frac{A}{\alpha + j\omega}$
$\int 1 -\alpha \le t \le \alpha$	$2\sin\omega\alpha$
0 otherwise	ω
A constant	$2\pi A\delta(\omega)$
u(t)A	$A\left(\pi\delta(\omega)-\frac{j}{\omega}\right)$
$\delta(t)$	1
$\delta(t-a)$	$e^{-j\omega a}$
$\cos at$	$\pi(\delta(\omega+a)+\delta(\omega-a))$
$\sin at$	$\frac{\pi}{i}(\delta(\omega-a)-\delta(\omega+a))$
$\operatorname{sgn}(t)$	$\frac{\frac{\pi}{j}}{\frac{2}{j\omega}}(\delta(\omega-a) - \delta(\omega+a))$
$\frac{1}{t}$	$-j\pi \mathrm{sgn}(\omega)$
$e^{-\alpha t }, \alpha > 0$	$\frac{2\alpha}{\alpha^2 + \omega^2}$

Linearity:

$$\mathcal{F}\{f+g\}=\mathcal{F}\{f\}+\mathcal{F}\{g\},\qquad \mathcal{F}\{kf\}=k\mathcal{F}\{f\}.$$

Shift theorems: If $F(\omega)$ is the Fourier transform of f(t)

$$\mathcal{F}\{e^{jat}f(t)\} = F(\omega - a), \quad a \text{ constant.}$$

$$\mathcal{F}{f(t-\alpha)} = e^{-j\alpha\omega}F(\omega), \qquad \alpha \text{ constant}$$

Differentiation: The Fourier transform of the *n*th derivative, $f^{(n)}(t)$, is $(j\omega)^n F(\omega)$.

Duality: If $F(\omega)$ is the Fourier transform of f(t) then

the Fourier transform of $F(t) = 2\pi \times f(-\omega)$.

Convolution and correlation:

The Fourier transform of f(t) * g(t) is $F(\omega)G(\omega)$ where

$$f(t) * g(t) = \int_{-\infty}^{\infty} f(\lambda)g(t-\lambda) d\lambda = g(t) * f(t).$$

The Fourier transform of $f(t) \star g(t)$ is $F(\omega)G(-\omega)$ where

$$f(t) \star g(t) = \int_{-\infty}^{\infty} f(\lambda)g(\lambda - t) \, \mathrm{d}\lambda$$

www.mathcentre.ac.uk © mathcentre 2009

Discrete Fourier transform (dft)

Given a sequence of N terms

$$\{g[0], g[1], g[2], \dots, g[N-1]\}$$

its discrete Fourier transform (dft) is the sequence

$$\{G[0], G[1], G[2], \dots, G[N-1]\}$$

where

$$G[k] = \sum_{n=0}^{N-1} g[n] e^{-2jnk\pi/N}.$$

Further

$$g[n] = \frac{1}{N} \sum_{k=0}^{N-1} G[k] e^{2jnk\pi/N}.$$

Maclaurin & Taylor Series Maclaurin Series:

$$f(x) = f(0) + \frac{x}{1!}f'(0) + \frac{x^2}{2!}f''(0) + \ldots + \frac{x^r}{r!}f^{(r)}(0) + \ldots$$

Taylor series (one variable):

$$f(x) = f(a) + \frac{(x-a)}{1!}f'(a) + \frac{(x-a)^2}{2!}f''(a) + \dots + \frac{(x-a)^r}{r!}f^{(r)}(a) + \dots$$

Taylor series (two variables): For a function f(x, y) of two variables

$$f(x,y) = f(a,b) + \frac{1}{1!} \left((x-a)\frac{\partial}{\partial x} + (y-b)\frac{\partial}{\partial y} \right) f(a,b) \\ + \frac{1}{2!} \left((x-a)\frac{\partial}{\partial x} + (y-b)\frac{\partial}{\partial y} \right)^2 f(a,b) + \dots \\ + \frac{1}{r!} \left((x-a)\frac{\partial}{\partial x} + (y-b)\frac{\partial}{\partial y} \right)^r f(a,b) + \dots$$

Stationary points in two variables: For z = f(x, y), stationary points (a, b) are located by solving $\frac{\partial f}{\partial x} = 0$ and $\frac{\partial f}{\partial y} = 0$. Define $\Delta = \frac{\partial^2 f}{\partial x^2} \frac{\partial^2 f}{\partial y^2} - \left(\frac{\partial^2 f}{\partial x \partial y}\right)^2$ at (a, b). The type of stationary point is given by:

$$\begin{split} & \Delta < 0 & \text{saddle point.} \\ \Delta > 0 \text{ and } \frac{\partial^2 f}{\partial x^2} > 0 & \text{minimum point.} \\ \Delta > 0 \text{ and } \frac{\partial^2 f}{\partial x^2} < 0 & \text{maximum point.} \end{split}$$

The Laplace transform

The **Laplace transform** of f(t) is F(s) defined by

$$F(s) = \mathcal{L}\{f(t)\} = \int_0^\infty e^{-st} f(t) \mathrm{d}t.$$

function $f(t), t \ge 0$	Laplace transform $F(s)$
t^n	$\frac{n!}{s^{n+1}}$
e^{at}	$\frac{1}{s-a}$
$t^n e^{-at}$	$\frac{\frac{n!}{(s+a)^{n+1}}}$
$\sin bt$	$\frac{b}{s^2+b^2}$
$\cos bt$	$\frac{s}{s^2+b^2}$
$\sinh bt$	$\frac{b}{s^2-b^2}$
$\cosh bt$	$\frac{s}{s^2-b^2}$
$t \sin bt$	$\frac{2bs}{(s^2+b^2)^2}$
$t\cos bt$	$\frac{s^2 - b^2}{(s^2 + b^2)^2}$
u(t) unit step	$\frac{1}{s}$
$\delta(t)$ impulse function	1
$\delta(t-a)$	e^{-sa}
f(t) periodic	$\frac{\int_0^T e^{-st} f(t) \mathrm{d}t}{1 - e^{-sT}}$
$t^n f(t)$	$(-1)^n \frac{\mathrm{d}^n}{\mathrm{d}s^n} F(s)$

Linearity:

$$\mathcal{L}\{f+g\} = \mathcal{L}\{f\} + \mathcal{L}\{g\}, \qquad \mathcal{L}\{kf\} = k\mathcal{L}\{f\}.$$
Shift theorems: If $\mathcal{L}\{f(t)\} = F(s)$ then

 $\mathcal{L}\{e^{-at}f(t)\} = F(s+a).$

$$\mathcal{L}\{u(t-d)f(t-d)\} = e^{-sd}F(s) \qquad d > 0.$$

u(t) is the unit step or Heaviside function.

Laplace transform of derivatives and integrals:

$$\mathcal{L}\lbrace f' \rbrace = sF(s) - f(0).$$

$$\mathcal{L}\lbrace f'' \rbrace = s^2F(s) - sf(0) - f'(0).$$

$$\mathcal{L}\lbrace \int_0^t f(t) dt \rbrace = \frac{1}{s}F(s).$$

The convolution theorem:

The Laplace transform of $f(t)\ast g(t)$ is F(s)G(s) where

$$f(t) * g(t) = \int_0^t f(t - \lambda)g(\lambda) \,\mathrm{d}\lambda = g(t) * f(t).$$

The z transform

Given a sequence, f[k], k = 0, 1, 2..., the (one-sided) z transform of f[k], is F(z) defined by

$$F(z) = \mathcal{Z}\{f[k]\} = \sum_{k=0}^{\infty} f[k] z^{-k}.$$

sequence $f[k]$	z transform $F(z)$
$\delta[k] = \left\{egin{array}{cc} 1 & k=0 \ 0 & k eq 0 \end{array} ight.$	1
$\delta[k] = \begin{cases} 1 & k = 0 \\ 0 & k \neq 0 \\ 1 & k \ge 0 \\ 0 & k < 0 \end{cases}$	$\frac{z}{z-1}$
$k = e^{-ak}$	$\frac{\frac{z}{(z-1)^2}}{\frac{z}{z-e^{-a}}}$
a^k	$\frac{z - e^{-a}}{z - a}$
ka^k	$\frac{az}{(z-a)^2}$
k^2	$\frac{\frac{z(z+1)}{(z-1)^3}}{z\sin a}$
$\sin ak$ $\cos ak$	$\frac{z \sin a}{z^2 - 2z \cos a + 1}$ $\frac{z(z - \cos a)}{z^2 - 2z \cos a + 1}$
$e^{-ak}\sin bk$	$\frac{z^2 - 2z\cos a + 1}{ze^{-a}\sin b}$ $\frac{ze^{-a}\sin b}{z^2 - 2ze^{-a}\cos b + e^{-2a}}$
$e^{-ak}\cos bk$	$\frac{z^2 - z \mathrm{e}^{-a} \cos b}{z^2 - 2z \mathrm{e}^{-a} \cos b + \mathrm{e}^{-2a}}$
$e^{-bk}f[k]$	$F(e^b z)$
kf[k]	$-z \frac{\mathrm{d}}{\mathrm{d}z} F(z)$

Linearity: If f[k] and g[k] are two sequences and c is a constant

$$\begin{split} \mathcal{Z}\{f[k]+g[k]\} &= \mathcal{Z}\{f[k]\} + \mathcal{Z}\{g[k]\}.\\ \mathcal{Z}\{cf[k]\} &= c\mathcal{Z}\{f[k]\}. \end{split}$$

First shift theorem:

$$\begin{split} \mathcal{Z}\{f[k+1]\} &= zF(z) - zf[0].\\ \mathcal{Z}\{f[k+2]\} &= z^2F(z) - z^2f[0] - zf[1]. \end{split}$$

Second shift theorem:

$$\mathcal{Z}{f[k-i]u[k-i]} = z^{-i}F(z), \qquad i = 1, 2, 3...$$

where F(z) is the z transform of f[k] and u[k] is the unit step sequence.

Convolution: $\mathcal{Z}{f[k] * g[k]} = F(z)G(z).$ where

$$f[k] * g[k] = \sum_{m=0}^{\kappa} f[m]g[k-m].$$

Numerical Integration

Simpson's rule: for *n* even, and $h = \frac{x_n - x_0}{n}$,

$$\int_{x_0}^{x_n} f(x) \, \mathrm{d}x \approx \frac{h}{3} \left(f_0 + 4f_1 + 2f_2 + 4f_3 + \right)$$

$$+\cdots + 2f_{n-2} + 4f_{n-1} + f_n$$
.
Truncation error $\approx -\frac{(x_n - x_0)h^4 f^{(4)}(\zeta)}{180}$.

 \boldsymbol{n} point **Gauss-Legendre** formula:

$$\int_{-1}^{1} f(x) \, \mathrm{d}x \approx \sum_{i=1}^{n} w_i f(x_i).$$

_			
	n	x_i	w_i
ſ	2	± 0.577350	1.000000
	3	± 0.774597	0.555556
		0.0	0.888889
	4	± 0.861136	0.347855
		± 0.339981	0.652145
	5	± 0.906180	0.236927
		0.0	0.568889
		± 0.538469	0.478629

Ordinary differential equations

To solve $\frac{dy}{dx} = f(x, y)$: Euler's method:

$$y_{r+1} = y_r + hf(x_r, y_r).$$

Modified Euler method:

$$y_{r+1}^{(p)} = y_r + hf_r \quad f_{r+1}^{(p)} = f(x_{r+1}, y_{r+1}^{(p)}).$$
$$y_{r+1}^{(c)} = y_r + \frac{h}{2}(f_r + f_{r+1}^{(p)}).$$

Runge-Kutta method:

$$k_1 = hf(x_r, y_r), \quad k_2 = hf(x_r + \frac{h}{2}, y_r + \frac{k_1}{2}).$$

$$k_3 = hf(x_r + \frac{h}{2}, y_r + \frac{k_2}{2}), \quad k_4 = hf(x_r + h, y_r + k_3).$$

$$y_{r+1} = y_r + \frac{1}{6}(k_1 + 2k_2 + 2k_3 + k_4).$$

